An auxiliary power unit (APU) is a device on a vehicle that provides energy for functions other than propulsion. They are commonly found on large aircraft, as well as some large land vehicles.
The primary purpose of an aircraft APU is to provide power to start the main engines. Turbine engines must be accelerated to a high rotational speed in order to provide sufficient air compression for self-sustaining operation. Smaller jet engines are usually started by an electric motor, while larger engines are usually started by an air turbine motor. Before engines are to be turned, the APU is started, generally by a battery or hydraulic accumulator. Once the APU is running, it provides power (electric, pneumatic, or hydraulic, depending on the design) to start the aircraft's main engines.
APUs are also used to run accessories while the engines are shut down. This allows the cabin to be comfortable while the passengers are boarding before the aircraft's engines are started. Electrical power is used to run systems for preflight checks. Some APUs are also connected to a hydraulic pump, allowing crews to operate hydraulic equipment (such as flight controls or flaps) prior to engine start. This function can also be used, on some aircraft, as a backup in flight in case of engine or hydraulic failure.
Aircraft with APUs can also accept electrical and pneumatic power from ground equipment when an APU has failed or is not to be used.
APUs fitted to extended-range twin-engine operations (ETOPS) aircraft are a critical safety device, as they supply backup electricity and compressed air in place of the dead engine or failed main engine generator. While some APUs may not be startable in flight, ETOPS-compliant APUs must be flight-startable at altitudes up to the aircraft service ceiling. Recent applications have specified starting up to 43,000 ft (13,000 m) from a complete cold-soak condition such as the Hamilton Sundstrand APS5000 for the Boeing 787 Dreamliner. If the APU or its electrical generator is not available, the aircraft cannot be released for ETOPS flight and is forced to take a longer non-ETOPS route.
On the Boeing 787 more-electric aircraft, the APU delivers only electricity to the aircraft. The absence of a pneumatic system simplifies the design, but high demand for electricity requires heavier generators.
Onboard solid oxide fuel cell (SOFC) APUs are being researched.
Jet fuel starters use a free power turbine section, but the method of connecting it to the engine depends on the aircraft design. In single-engine aircraft such as the A-7 Corsair II and F-16 Fighting Falcon, the JFS power section is always connected to the main engine through the engine's accessory gearbox. In contrast, the twin-engine F-15 Eagle features a single JFS, and the JFS power section is connected through a central gearbox which can be engaged to one engine at a time.
The hydrazine is contained in a sealed, nitrogen charged accumulator. When the system is armed, the hydrazine is released whenever the engine-driven generators go off-line, or if all engine-driven hydraulic pumps fail.
Transport aircraft
Functions of APU
APUs are also used to run accessories while the engines are shut down. This allows the cabin to be comfortable while the passengers are boarding before the aircraft's engines are started. Electrical power is used to run systems for preflight checks. Some APUs are also connected to a hydraulic pump, allowing crews to operate hydraulic equipment (such as flight controls or flaps) prior to engine start. This function can also be used, on some aircraft, as a backup in flight in case of engine or hydraulic failure.
Aircraft with APUs can also accept electrical and pneumatic power from ground equipment when an APU has failed or is not to be used.
APUs fitted to extended-range twin-engine operations (ETOPS) aircraft are a critical safety device, as they supply backup electricity and compressed air in place of the dead engine or failed main engine generator. While some APUs may not be startable in flight, ETOPS-compliant APUs must be flight-startable at altitudes up to the aircraft service ceiling. Recent applications have specified starting up to 43,000 ft (13,000 m) from a complete cold-soak condition such as the Hamilton Sundstrand APS5000 for the Boeing 787 Dreamliner. If the APU or its electrical generator is not available, the aircraft cannot be released for ETOPS flight and is forced to take a longer non-ETOPS route.
History
The Boeing 727 in 1963 was the first jetliner to feature a gas turbine APU, allowing it to operate at smaller airports, independent from ground facilities. The APU can be identified on many modern airliners by an exhaust pipe at the aircraft tail.Sections of APU
A typical gas turbine APU for commercial transport aircraft comprises three main sections:- Power section
- Load compressor section and
- Gearbox section
On the Boeing 787 more-electric aircraft, the APU delivers only electricity to the aircraft. The absence of a pneumatic system simplifies the design, but high demand for electricity requires heavier generators.
Onboard solid oxide fuel cell (SOFC) APUs are being researched.
Manufacturers
Three main corporations compete in the aircraft APU market: Goodrich Corporation, United Technologies Corporation (through its subsidiaries Pratt & Whitney Canada and Hamilton Sundstrand), and Honeywell International Inc.Military aircraft
Smaller military aircraft, such as fighters and attack aircraft, feature auxiliary power systems which are different from those used in transport aircraft. The functions of engine starting and providing electrical and hydraulic power are divided up among two units, the jet fuel starter and the emergency power unit.Jet fuel starter
A jet fuel starter (JFS) is a small turboshaft engine designed to drive a jet engine to its self-accelerating RPM. Rather than supplying bleed air to a starter motor in the manner of an APU, a JFS output shaft is mechanically connected to an engine. As soon as the JFS begins to turn, the engine turns; unlike APUs, these starters are not designed to produce electrical power when engines are not running.Jet fuel starters use a free power turbine section, but the method of connecting it to the engine depends on the aircraft design. In single-engine aircraft such as the A-7 Corsair II and F-16 Fighting Falcon, the JFS power section is always connected to the main engine through the engine's accessory gearbox. In contrast, the twin-engine F-15 Eagle features a single JFS, and the JFS power section is connected through a central gearbox which can be engaged to one engine at a time.
Emergency power unit
Emergency hydraulic and electric power are provided by a different type of gas turbine engine. Unlike most gas turbines, an emergency power unit has no gas compressor or ignitors, and uses a combination of hydrazine and water, rather than jet fuel. When the hydrazine and water mixture is released and passes across a catalyst of iridium, it spontaneously ignites, creating hot expanding gases which drive the turbine. The power created is transmitted through a gearbox to drive an electrical generator and hydraulic pump.The hydrazine is contained in a sealed, nitrogen charged accumulator. When the system is armed, the hydrazine is released whenever the engine-driven generators go off-line, or if all engine-driven hydraulic pumps fail.
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου